LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION – MATHEMATICS

THIRD SEMESTER – NOVEMBER 2015

MT 3812 - CLASSICAL MECHANICS

Date : 05/11/2015 Time : 09:00-12:00

Dept. No.

Max.: 100 Marks

[15]

[5]

Answer *ALL* the questions

1. a. State and prove the principle of virtual work

OR

b.Classify the motion of the following objects

i. Arrow---- ii. Compact disc.---- iii. Electron ----- iv. Fan blade ----- v. Honeybee ----- [5]

c. Derive the Lagrange's equation of motion and find the differential equation of motion

for spherical pendulum of length l.

OR

- d. Classify the constraints with reasons for the following cases
 - i. A bead moving on a circular wire.
 - ii. A sphere rolling down a rough inclined plane without slipping.
 - iii. The molecules moving inside a gas container

2. a. Write down the Hamiltonian and Hamilton's equation for a particle in a central force field in space

OR

- b. Find the Routh's function for the motion of a projectile. Hence deduce the equation of motion.
- c. State Hamilton's principle and deduce Lagrange's equation from Hamilton's principle.

OR

- d. Derive the Hamilton's function and the Hamilton's canonical equation of motion and give the physical significance of Hamilton's function. [7+8]
- 3. a. Find the infinite decimal contact transformation and deduce the transformation equation in terms of Poisson bracket.

OR	
b. Find the values of a and b so that the equation $Q = q^{a} \cos b p$, $P = q^{a} \sin b p$ represent a	
canonical transformation	[5]
c. State and prove Integral Invariant theorem of Poincare	
OR	
d. Discuss about the motion of a top	[7+8]
4. a. Derive the transformation equation for Infinite decimal contact transformation.	
OR	
b. Define dust cloud. State and prove Liouvilli's theorem.	[5]
c. Derive the conservation theorem of angular momentum using Infinite decimal	
contact transformation	
OR	
d. Derive the Hamilton – Jacobi equation for the Hamilton's principle function S.	[15]
5. a.Discuss the motion of a particle moving in a plane under the action of central	
force using Hamilton - Jacobi equation.	
OR	
b. Find the action and angle variable for simple Harmonic Oscillator	[5]
c. Derive the Hamilton – Jacobi equation for the Hamilton's characteristic function	
OR	
d. Discuss Kepler's problem using action angle variable.	[15]
